Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__s(X)) → s(X)
activate(n__x(X1, X2)) → x(X1, X2)
activate(X) → X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__s(X)) → s(X)
activate(n__x(X1, X2)) → x(X1, X2)
activate(X) → X

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

U311(tt, V2) → U321(isNat(activate(V2)))
U111(tt, V2) → U121(isNat(activate(V2)))
U721(tt, M, N) → ACTIVATE(M)
ACTIVATE(n__plus(X1, X2)) → PLUS(X1, X2)
U511(tt, M, N) → ACTIVATE(N)
U511(tt, M, N) → U521(isNat(activate(N)), activate(M), activate(N))
PLUS(N, s(M)) → ISNAT(M)
U511(tt, M, N) → ACTIVATE(M)
ISNAT(n__x(V1, V2)) → U311(isNat(activate(V1)), activate(V2))
U521(tt, M, N) → PLUS(activate(N), activate(M))
X(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U511(isNat(M), M, N)
X(N, s(M)) → U711(isNat(M), M, N)
U521(tt, M, N) → S(plus(activate(N), activate(M)))
U311(tt, V2) → ACTIVATE(V2)
U721(tt, M, N) → ACTIVATE(N)
ACTIVATE(n__0) → 01
ACTIVATE(n__x(X1, X2)) → X(X1, X2)
X(N, s(M)) → ISNAT(M)
ISNAT(n__s(V1)) → U211(isNat(activate(V1)))
ISNAT(n__plus(V1, V2)) → U111(isNat(activate(V1)), activate(V2))
ISNAT(n__x(V1, V2)) → ISNAT(activate(V1))
U511(tt, M, N) → ISNAT(activate(N))
PLUS(N, 0) → ISNAT(N)
U111(tt, V2) → ACTIVATE(V2)
U411(tt, N) → ACTIVATE(N)
U611(tt) → 01
U711(tt, M, N) → ACTIVATE(M)
U721(tt, M, N) → X(activate(N), activate(M))
U521(tt, M, N) → ACTIVATE(N)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ACTIVATE(n__s(X)) → S(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
U521(tt, M, N) → ACTIVATE(M)
ISNAT(n__x(V1, V2)) → ACTIVATE(V2)
U711(tt, M, N) → ACTIVATE(N)
PLUS(N, 0) → U411(isNat(N), N)
U711(tt, M, N) → U721(isNat(activate(N)), activate(M), activate(N))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
X(N, 0) → U611(isNat(N))
U111(tt, V2) → ISNAT(activate(V2))
ISNAT(n__x(V1, V2)) → ACTIVATE(V1)
U311(tt, V2) → ISNAT(activate(V2))
U721(tt, M, N) → PLUS(x(activate(N), activate(M)), activate(N))
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
U711(tt, M, N) → ISNAT(activate(N))

The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__s(X)) → s(X)
activate(n__x(X1, X2)) → x(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

U311(tt, V2) → U321(isNat(activate(V2)))
U111(tt, V2) → U121(isNat(activate(V2)))
U721(tt, M, N) → ACTIVATE(M)
ACTIVATE(n__plus(X1, X2)) → PLUS(X1, X2)
U511(tt, M, N) → ACTIVATE(N)
U511(tt, M, N) → U521(isNat(activate(N)), activate(M), activate(N))
PLUS(N, s(M)) → ISNAT(M)
U511(tt, M, N) → ACTIVATE(M)
ISNAT(n__x(V1, V2)) → U311(isNat(activate(V1)), activate(V2))
U521(tt, M, N) → PLUS(activate(N), activate(M))
X(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U511(isNat(M), M, N)
X(N, s(M)) → U711(isNat(M), M, N)
U521(tt, M, N) → S(plus(activate(N), activate(M)))
U311(tt, V2) → ACTIVATE(V2)
U721(tt, M, N) → ACTIVATE(N)
ACTIVATE(n__0) → 01
ACTIVATE(n__x(X1, X2)) → X(X1, X2)
X(N, s(M)) → ISNAT(M)
ISNAT(n__s(V1)) → U211(isNat(activate(V1)))
ISNAT(n__plus(V1, V2)) → U111(isNat(activate(V1)), activate(V2))
ISNAT(n__x(V1, V2)) → ISNAT(activate(V1))
U511(tt, M, N) → ISNAT(activate(N))
PLUS(N, 0) → ISNAT(N)
U111(tt, V2) → ACTIVATE(V2)
U411(tt, N) → ACTIVATE(N)
U611(tt) → 01
U711(tt, M, N) → ACTIVATE(M)
U721(tt, M, N) → X(activate(N), activate(M))
U521(tt, M, N) → ACTIVATE(N)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ACTIVATE(n__s(X)) → S(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
U521(tt, M, N) → ACTIVATE(M)
ISNAT(n__x(V1, V2)) → ACTIVATE(V2)
U711(tt, M, N) → ACTIVATE(N)
PLUS(N, 0) → U411(isNat(N), N)
U711(tt, M, N) → U721(isNat(activate(N)), activate(M), activate(N))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
X(N, 0) → U611(isNat(N))
U111(tt, V2) → ISNAT(activate(V2))
ISNAT(n__x(V1, V2)) → ACTIVATE(V1)
U311(tt, V2) → ISNAT(activate(V2))
U721(tt, M, N) → PLUS(x(activate(N), activate(M)), activate(N))
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
U711(tt, M, N) → ISNAT(activate(N))

The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__s(X)) → s(X)
activate(n__x(X1, X2)) → x(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 8 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
QDP
          ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

U721(tt, M, N) → ACTIVATE(M)
U511(tt, M, N) → ACTIVATE(N)
ACTIVATE(n__plus(X1, X2)) → PLUS(X1, X2)
U511(tt, M, N) → U521(isNat(activate(N)), activate(M), activate(N))
U511(tt, M, N) → ACTIVATE(M)
PLUS(N, s(M)) → ISNAT(M)
ISNAT(n__x(V1, V2)) → U311(isNat(activate(V1)), activate(V2))
U521(tt, M, N) → PLUS(activate(N), activate(M))
X(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U511(isNat(M), M, N)
X(N, s(M)) → U711(isNat(M), M, N)
U721(tt, M, N) → ACTIVATE(N)
U311(tt, V2) → ACTIVATE(V2)
X(N, s(M)) → ISNAT(M)
ACTIVATE(n__x(X1, X2)) → X(X1, X2)
ISNAT(n__plus(V1, V2)) → U111(isNat(activate(V1)), activate(V2))
U511(tt, M, N) → ISNAT(activate(N))
ISNAT(n__x(V1, V2)) → ISNAT(activate(V1))
U111(tt, V2) → ACTIVATE(V2)
PLUS(N, 0) → ISNAT(N)
U411(tt, N) → ACTIVATE(N)
U711(tt, M, N) → ACTIVATE(M)
U721(tt, M, N) → X(activate(N), activate(M))
U521(tt, M, N) → ACTIVATE(N)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
U521(tt, M, N) → ACTIVATE(M)
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__x(V1, V2)) → ACTIVATE(V2)
U711(tt, M, N) → ACTIVATE(N)
PLUS(N, 0) → U411(isNat(N), N)
U711(tt, M, N) → U721(isNat(activate(N)), activate(M), activate(N))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
U111(tt, V2) → ISNAT(activate(V2))
ISNAT(n__x(V1, V2)) → ACTIVATE(V1)
U311(tt, V2) → ISNAT(activate(V2))
U721(tt, M, N) → PLUS(x(activate(N), activate(M)), activate(N))
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
U711(tt, M, N) → ISNAT(activate(N))

The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__s(X)) → s(X)
activate(n__x(X1, X2)) → x(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


U721(tt, M, N) → ACTIVATE(M)
U511(tt, M, N) → ACTIVATE(N)
ACTIVATE(n__plus(X1, X2)) → PLUS(X1, X2)
U511(tt, M, N) → ACTIVATE(M)
PLUS(N, s(M)) → ISNAT(M)
ISNAT(n__x(V1, V2)) → U311(isNat(activate(V1)), activate(V2))
X(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U511(isNat(M), M, N)
X(N, s(M)) → U711(isNat(M), M, N)
U721(tt, M, N) → ACTIVATE(N)
U311(tt, V2) → ACTIVATE(V2)
X(N, s(M)) → ISNAT(M)
ISNAT(n__plus(V1, V2)) → U111(isNat(activate(V1)), activate(V2))
U511(tt, M, N) → ISNAT(activate(N))
ISNAT(n__x(V1, V2)) → ISNAT(activate(V1))
PLUS(N, 0) → ISNAT(N)
U411(tt, N) → ACTIVATE(N)
U711(tt, M, N) → ACTIVATE(M)
U721(tt, M, N) → X(activate(N), activate(M))
U521(tt, M, N) → ACTIVATE(N)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
U521(tt, M, N) → ACTIVATE(M)
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__x(V1, V2)) → ACTIVATE(V2)
U711(tt, M, N) → ACTIVATE(N)
PLUS(N, 0) → U411(isNat(N), N)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__x(V1, V2)) → ACTIVATE(V1)
U311(tt, V2) → ISNAT(activate(V2))
U721(tt, M, N) → PLUS(x(activate(N), activate(M)), activate(N))
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
U711(tt, M, N) → ISNAT(activate(N))
The remaining pairs can at least be oriented weakly.

U511(tt, M, N) → U521(isNat(activate(N)), activate(M), activate(N))
U521(tt, M, N) → PLUS(activate(N), activate(M))
ACTIVATE(n__x(X1, X2)) → X(X1, X2)
U111(tt, V2) → ACTIVATE(V2)
U711(tt, M, N) → U721(isNat(activate(N)), activate(M), activate(N))
U111(tt, V2) → ISNAT(activate(V2))
Used ordering: Combined order from the following AFS and order.
U721(x1, x2, x3)  =  U721(x1, x2, x3)
tt  =  tt
ACTIVATE(x1)  =  x1
U511(x1, x2, x3)  =  U511(x2, x3)
n__plus(x1, x2)  =  n__plus(x1, x2)
PLUS(x1, x2)  =  PLUS(x1, x2)
U521(x1, x2, x3)  =  U521(x2, x3)
isNat(x1)  =  isNat
activate(x1)  =  x1
s(x1)  =  s(x1)
ISNAT(x1)  =  x1
n__x(x1, x2)  =  n__x(x1, x2)
U311(x1, x2)  =  U311(x1, x2)
X(x1, x2)  =  X(x1, x2)
0  =  0
U711(x1, x2, x3)  =  U711(x1, x2, x3)
U111(x1, x2)  =  x2
U411(x1, x2)  =  U411(x2)
n__s(x1)  =  n__s(x1)
x(x1, x2)  =  x(x1, x2)
U11(x1, x2)  =  U11
U12(x1)  =  U12
U21(x1)  =  U21
U52(x1, x2, x3)  =  U52(x1, x2, x3)
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U31(x1, x2)  =  x1
U32(x1)  =  U32
n__0  =  n__0
U41(x1, x2)  =  x2
U72(x1, x2, x3)  =  U72(x1, x2, x3)
U71(x1, x2, x3)  =  U71(x1, x2, x3)

Recursive path order with status [2].
Quasi-Precedence:
[U72^13, nx2, X2, U71^13, x2, U723, U713] > [nplus2, U523, plus2, U513] > [tt, isNat, U11, U12, U21, U32] > [U51^12, PLUS2, U52^12] > U41^11
[U72^13, nx2, X2, U71^13, x2, U723, U713] > [nplus2, U523, plus2, U513] > [tt, isNat, U11, U12, U21, U32] > [s1, ns1]
[U72^13, nx2, X2, U71^13, x2, U723, U713] > [nplus2, U523, plus2, U513] > [tt, isNat, U11, U12, U21, U32] > [0, U61, n0] > U41^11
[U72^13, nx2, X2, U71^13, x2, U723, U713] > U31^12

Status:
nplus2: [2,1]
U52^12: [2,1]
U51^12: [2,1]
U41^11: multiset
U11: multiset
x2: [2,1]
ns1: multiset
U71^13: [2,3,1]
isNat: multiset
PLUS2: [1,2]
U61: multiset
tt: multiset
U31^12: multiset
s1: multiset
U513: [2,3,1]
plus2: [2,1]
U21: multiset
X2: [2,1]
U32: multiset
U12: multiset
U72^13: [2,3,1]
0: multiset
U523: [2,3,1]
n0: multiset
nx2: [2,1]
U723: [2,3,1]
U713: [2,3,1]


The following usable rules [17] were oriented:

U11(tt, V2) → U12(isNat(activate(V2)))
U21(tt) → tt
U12(tt) → tt
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
x(N, 0) → U61(isNat(N))
plus(N, s(M)) → U51(isNat(M), M, N)
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
activate(n__s(X)) → s(X)
activate(n__plus(X1, X2)) → plus(X1, X2)
plus(N, 0) → U41(isNat(N), N)
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
U41(tt, N) → activate(N)
activate(n__x(X1, X2)) → x(X1, X2)
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
x(N, s(M)) → U71(isNat(M), M, N)
activate(n__0) → 0
x(X1, X2) → n__x(X1, X2)
s(X) → n__s(X)
plus(X1, X2) → n__plus(X1, X2)
0n__0
activate(X) → X



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

U711(tt, M, N) → U721(isNat(activate(N)), activate(M), activate(N))
U111(tt, V2) → ISNAT(activate(V2))
U511(tt, M, N) → U521(isNat(activate(N)), activate(M), activate(N))
ACTIVATE(n__x(X1, X2)) → X(X1, X2)
U111(tt, V2) → ACTIVATE(V2)
U521(tt, M, N) → PLUS(activate(N), activate(M))

The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__s(X)) → s(X)
activate(n__x(X1, X2)) → x(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 6 less nodes.